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Introduction

One electron oxidation of cobalt(ll) porphyrins can occur
from either the cobalt d or porphyrim orbitals depending on
the choice of porphyrin and reaction media? Oxidation of
(octaethylporphyrinato)cobalt(ll), (OEP)EA), in the presence
of ligands such as #0 and CO produces diamagnetic five and
six coordinate complexes of cobalt(If)¢ In the absence of
additional ligands to coordinate with Co(lll) the first oxidation
of (OEP)Cd occurs from a porphyrizr MO to produce ar
cation radical complex of cobalt(ll), [(OEP)5 (2).1* Metal-
loporphyrins cation radical complexes and dimers of the OEP
derivatives have been extensively investigdfed® This article
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reports on the interconversion of the paramagnefic=(1)
monomer, [(OEP)CH™ (2), with a diamagnetic dimer, [(OEP)-
Cd'22" (3), in dichloromethane solveritd NMR shift and line
width studies in CBCl, are applied in evaluating the thermo-
dynamic and activation parameters for homolytic dissociation
of the diamagnetic dimei3].

Experimental Methods and Analysis

Dichloromethaned, (99.6 atom % D) was placed in a vacuum
transfer tube containing,Bs to scavenge for residual water and then
degassed by multiple freezpump-thaw cycles. (OEP)Cloand (OEP)-

Zn'" were purchased from Aldrich, and anhydrous AgBfas purchased
from Alfa and stored in an inert-atmosphere box under argon prior to
use. Solutions of [(OEP)Cd"BF,~ were prepared by mixing (OEP)-
Cod' and AgBFR in dicholoromethane using the published procedure
for the formation of [(OEP)CH"CIlO,~.* Solid samples of (OEP)Co
(1.0-1.7 mg) and a stoichiometric quantity of solid anhydrous AgBF
were weighed in an inert-atmosphere box and placed in 507 PP Wilmad
NMR tubes equipped with a stopcock and then attached to a vacuum
line for evacuation. Solution samples were prepared by vacumm transfer
of 0.35 mL of dried, degassed dichloromethahé@to the NMR tubes,
which were subsequently flame sealed.

Activation parameters for dissociation of the diamagnetic dimer
[(OEP)Cd1.?" into paramagnetic monomers [(OEP)Cowere deter-
mined from the temperature dependence of tHeNMR line width.

The expression that relates the¢ NMR line width changes to the rate
of dissociation of the diamagnetic dimer is given by et} 25

AV 0= Toeo — = Ta LAT2P[L + (Ar/271 7 (1)

Equation 1 reduces tdzeq * = 74 * for nuclei in paramagnetic
species where the mean lifetimg)(is long and the electronnuclear
coupling constantA radians s?) is large (Arp/2)? > 1). The apparent
mean lifetime for the diamagnetic species) (that results from the
observedi, e yields the rate constant(™* = kspp for bond homolysis
events that result in paramagnetic species that produce efficient nuclear
relaxation (Bzy/2)? > 1).

Thermodynamic values for the dissociation of [(OEPYEG(BF4),
were obtained from analysis &1 NMR chemical shift measurements
at a series of temperatures (36860 K) where2 and3 are in limiting
fast interchange. Nonlinear least squares curve fitting of the measured
Jdobs Values at a series of temperatures to eq 2 gives the best fit values

Sepe= Op + Op/(4[M] i)[e—AH°/RTeAS°/R_ (e—ZAH"/RTeZAS"/R +
B[M]ie_AHOIRTeASO/R)l/Z] + 1/(4[M]i)[_e—AH°/RTeAS°/R+
(e—zAH"/RTeZAS"/R + 8[M]ie—AH"/RTeAS"/R)llZ](CMT—l +0y0) (2)

for AH® andAS’ for dissociation of the dimer (D) and the slope of the

temperature dependend@y) for the contact shift of the paramagnetic
monomer (M).
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Results and Discussion
Oxidation of (OEP)Co" by AgBF,in CH,Cl,. Reaction of Jh\L
AgBF4 with (OEP)Cd (1) in rigorously dried dichloromethane 297K —
results in the one-electron oxidation dfto produce [(OEP)-
C0d'1"BF4~ (2), which is formulated as a porphyrim cation 288K 1Y,

radical complex of cobalt(Il) on the basis of prior studiésrge
downfield *H NMR paramagnetic shifts are observed for the

methylene (CH) and methine{cCH) protons in2. Assuming 270K ———J'L%

that the paramagnetic shifts are dominated by contact terms from
7 spin density, the paramagnetic shifts indicate that there is
positive r spin density on the pyrrole carbons and negative 253K

spin density on the methine carbons. Negativepin density

on the methine carbons is a clear indication thattmeolecular

orbital that contains the unpaired electron has a node at the

methine carbon which is a defining characteristic for thg a

porphyrinz MO.14:3637 H NMR contact shifts fo@ thus support 233K

the assignment of an unpaired electron to theparphyrinz

MO of [(OEP)Cd]"BF,~ 6 rather than the ®° The most

probable electron configuration f@rplaces an unpaired electron *CHz-

in both the a, porphyrins and ag cobalt (Il) dz orbitals, which

corresponds to afA, ground state. 225K -
Dimerization of [(OEP)Co"]™BF4~ in CH,Cl,. Dichlo- 8 6 4 2 0

romethane solutions of [(OEP)6BF,~ (2) experience changes PPM

in the electronic spectrum as the temperature is lowered that_. )

are indicative of the dimerization @to [(OEP)Cd]2* (3). A E‘g.‘fii(éﬁ;)‘j'};pggzgf (ggﬁg‘;’?”,ff of the NMR of [(OEF)

multiplicity of peaks including two prominent bands in the Soret

region (391 nm, 352 nm) and at least one new broad transition

. . . Iy, 2

in the near-IR region centered at 870 nm are particularly Bf [(OEP)Co™];™~ 2{(OEP)CoJ*
characteristic features for the electronic spectrum3dfee r

Supporting Information). Similar electronic spectral changes are 241

observed in the dimerization of Zn(ll) and Mg(ll) octaethylpor-

phyrin 7 cation radical complexéd:'> Near-IR bands at 920 w 25F

and 950 nm, respectively, in the cation radical dimers [(OEP)- 20t

Zn],*" (4)15 and [(OEP)Mg}*™ (5)** have been assigned to 26 F AHgyt = 18.7 keal mol!

transitions from the filled bonding to the empty antibonding E AS,,,} =27 cal K! mol!

molecular orbitals that result from interporphyrin cation radical 271F i

m— interactions. This assignment has also been suggested for S TP TP SRR

the near-IR bands observed for a series of cationic metallopor- 0.0039  0.0040 0.0041  0.0042

phyrin dimerd” and is the probable origin for the 793 and 870 T (K1)

nm bands in [(OEP)RK"(BF4). (6)*8 and [(OEP)CH]2t- Figure 2. Determination of the activation parameters for dissociation
(BF47)2, respectively. of the diamagnetic dimer [(OEP)®R?" into paramagneticY= 1)

The methine hydrogen NMR chemical shifts for [[OEP)2h] monomers [(OEP)CG" in CD;Cl, from the methine'H NMR line
(0 = 3.49) and [(OEP)RR}* (0 = 4.70) are dramatically ~ Proadening.
changed from a typical a_rpmat_ic OEP positien~ 10). The Table 1. 'H NMR Shifts  ppm) for [[OEP)M] Complexes in
methine'H NMR shift positions in4 and6 approach the values  cD,Cl,
for localized olefins § ~ 3—5), which is a consequence of

. . . - . compound T (K) —CH= —CH; —CH;s
interruption of the porphyrin aromaticity and associated

electron ring current by cation dimer formati8t8The methine [(SEE)@]}Z? gég ‘31"7‘8 i'gg 1.52 %59%
hydrogens of3 experience a large upfield shif (= 7.22) %EOEP;Cd]iZH 200 792 3:16: 299 126
relative to normal aromatic porphyrin complexes such as (OEP)- (OEP)Co-| 203 10.47 4.11 1.92
Co—I| (6 = 10.47). However, the magnitude of the shift for  (OEP)Rh-I 293 10.31 4.18 1.98

[(OEP)Cd'],2" (3) is only about half that observed for [(OEP)-
Rhl2t (6) and [(OEP)Znf?* (4) (Table 1), which indicates that  dimer @) into paramagnetic monomers [(OEPYTo(2) (Figure

3 retains more aromaticity and ring current théwor 6. 1). Apparent activition parameters for dissociation of [(OEP)-
Activation Parameters for Dissociation of Diamagnetic Cd'],%" in CD,Cl, were obtained from the temperature depen-
Dimers into Paramagnetic Monomers from!H NMR Re- dence okappfor 3 and the use of transition state theoyH*app

laxation Studies.'H NMR spectra for the methine hydrogens = 18.7+ 0.8 kcal mof* and AS = 27 + 3 cal K-t mol™?)
in the diamagnetic dimer, [(OEP){g?" (3), in dichloromethane (Figure 2).
for the temperature range of 23260 K manifest exchange The H NMR line broadening method was also used to
broadening that results from dissociation of the diamagnetic evaluate the kinetics for dissociation of the diamagnetic zinc
— - - dimer [(OEP)Zn}?"(BF47)2 (4) in CD,Cl,. Analysis of the
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Notes

[(OEP)Co],2*2BF; == 2[(OEP)Co]*BF4

s0 b
48 F
46 F
§ 44 £ AH°=15.9 kcal mol !
2k AS=43cal K mol®
40 £ Cy=146x10°ppm K
38 F
L L 1 L
30F
28 F
= 96| AH=157keal mol!
24 b AS=42calK! mol’
22 b Cy=9.7x10% ppmK
1 1 L
7 3
T gf AH°=15.9keal mol”
& b As=43calK* mol
Sk CM=1.87x103pme
1 1 1 1 1 L L

29 3.0 3.1

10° 1!
Figure 3. Points are observed chemical shii$ for the methine (CH)
and ethyl (CH and CH) resonances for the limiting fast interchange
of 3and2 as a function of temperature. The solid lines are calculated

from eq 2 using the best fikH° andAS’ for dissociation of3 and the
slope Cw) of the paramagnetic shift fa.

32

paramagnetier cation radical monomer, [(OEP)ZiBF,~ (see
Supporting Information).

Thermodynamics of Dimerization of [[OEP)Cd'|* by H
NMR Shift Measurements. At temperatures greater than 300
K the 200 MHzH NMR for a CD,Cl, solution of 2 and 3
results from the limiting fast interchange &fand 3. Thermo-
dynamic values for the dissociation of [[OEP){8"(BF4)2
(AH° = 15.94 0.5 kcal mot?; AS® = 43 & 3 cal K1 mol™)

have been evaluated from the temperature dependence of the

Inorganic Chemistry, Vol. 38, No. 17, 1998949

observed fast exchange averagettNMR shifts using eq 2
(Figure 3). The difference of2.8 kcal mof! between the
enthalpy of dissociationAH® = 15.9 4 0.5 kcal mof'!) and

the activation enthalpy for dissociationd* = 18.74 0.8 kcal
mol~Y) for 3 is in the range (23 kcal mol?l) frequently
observed for bond homolysis reactions of neutral molecules in
low-viscosity media8 The very large positive entropy change
observed for dissociation & into the monocatior?2 (AS’ =

43 cal K" mol~1) probably results from the dication unit having
larger interactions with the anions and solvent than occur for
the monocationic monomers.

The activation enthalpy for dissociation of [(OEP)§8"
(AH* = 18.7 £ 0.8 kcal mot?) is comparable to that for
[(OEP)Znk%* (AH¥ = 17.7+ 0.8 kcal mot?) but substantially
smaller than that for [(OEP)R#".1® The monomer units in
[(OEP)Zn}%" (4) are held together in the dimer exclusively by
interporphyrin cation radicat— interactions, but the bonding
in [(OEP)RN}2* (6) consists of a Rh—Rh' (4d2—4d2) bond
in addition to interporphyrior—s bonding!® The diamagnetism,
electronic spectrum, antH NMR of [(OEP)Cd'],*" are con-
sistent with the presence of both interporphyrin and intermetal
bonding, but the Cb-C0d' (3d2—3d2) bonding is substantially
smaller than in [(OEP)RK]™ and the disruption of the porphyrin
aromaticity through interporphyrin cation radicat--r bonding
is also less than that in eithdror 6.
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